Telegram Group & Telegram Channel
Подходы к задаче ранжирования

🔸 Pointwise, он же поточечный. Мы будем рассматривать релевантность как абсолютное мерило и будем штрафовать модель за абсолютную разность между предсказанной релевантностью и той, которую мы знаем по обучающей выборке. Например, асессор поставил документу оценку 3, а мы бы сказали 2, поэтому штрафуем модель на 1.
🔸 Pairwise, попарный. Мы будем сравнивать документы друг с другом. Например, в обучающей выборке есть два документа, и нам известно, какой из них более релевантный по данному запроса. Тогда мы будем штрафовать модель, если она более релевантному поставила прогноз ниже, чем менее релевантному, то есть неправильно сранжировала пару.
🔸 Listwise. Он тоже основан на относительных релевантностях, но уже не внутри пар: мы ранжируем моделью всю выдачу и оцениваем результат — если на первом месте оказался не самый релевантный документ, то получаем большой штраф.



tg-me.com/ds_interview_lib/35
Create:
Last Update:

Подходы к задаче ранжирования

🔸 Pointwise, он же поточечный. Мы будем рассматривать релевантность как абсолютное мерило и будем штрафовать модель за абсолютную разность между предсказанной релевантностью и той, которую мы знаем по обучающей выборке. Например, асессор поставил документу оценку 3, а мы бы сказали 2, поэтому штрафуем модель на 1.
🔸 Pairwise, попарный. Мы будем сравнивать документы друг с другом. Например, в обучающей выборке есть два документа, и нам известно, какой из них более релевантный по данному запроса. Тогда мы будем штрафовать модель, если она более релевантному поставила прогноз ниже, чем менее релевантному, то есть неправильно сранжировала пару.
🔸 Listwise. Он тоже основан на относительных релевантностях, но уже не внутри пар: мы ранжируем моделью всю выдачу и оцениваем результат — если на первом месте оказался не самый релевантный документ, то получаем большой штраф.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/35

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

Библиотека собеса по Data Science | вопросы с собеседований from cn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA